Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002151

RESUMO

Rice plants are highly sensitive to high-temperature stress, posing challenges to grain yield and quality. However, the impact of high temperatures on the quality of high-quality hybrid rice during the booting stage, as well as the differing effects of the booting and grain-filling stages on grain quality, are currently not well-known. Therefore, four high-quality hybrid rice were subjected to control (CK) and high-temperature stress during the booting (HT1) and grain-filling stages (HT2). Compared to the control, HT1 significantly reduced the spikelets panicle-1 (16.1%), seed setting rate (67.5%), and grain weight (7.4%), while HT2 significantly reduced the seed setting rate (6.0%) and grain weight (7.4%). In terms of quality, both HT1 and HT2 significantly increased chalkiness, chalky grain rate, gelatinization temperature, peak viscosity (PV), trough viscosity (TV), final viscosity (FV), and protein content in most varieties, and significantly decreased grain length, grain width, total starch content, and amylose content. However, a comparison between HT1 and HT2 revealed that the increase in chalkiness, chalky grain rate, PV, TV, and FV was greater under HT2. HT1 resulted in a greater decrease in grain length, grain width, total starch content, and amylose content, as well as an increase in protein content. Additionally, HT1 led to a significant decrease in amylopectin content, which was not observed under HT2. Therefore, future efforts in breeding and cultivating high-quality hybrid rice should carefully account for the effects of high temperatures at different stages on both yield and quality.

2.
Front Plant Sci ; 14: 1295003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38317835

RESUMO

Low temperatures during the grain-filling phase have a detrimental effect on both the yield and quality of rice grains. However, the specific repercussions of low temperatures during this critical growth stage on grain quality and mineral nutrient composition in high-quality hybrid indica rice varieties have remained largely unexplored. The present study address this knowledge gap by subjecting eight high-quality indica rice varieties to two distinct temperature regimes: low temperature (19°C/15°C, day/night) and control temperature (28°C/22°C) during their grain-filling phase, and a comprehensive analysis of various quality traits, with a particular focus on mineral nutrients and their interrelationships were explored. Exposure of rice plants to low temperatures during early grain filling significantly impacts the physicochemical and nutritional properties. Specifically, low temperature increases the chalkiness rate and chalkiness degree, while decreases starch and amylopectin content, with varying effects on amylose, protein, and gelatinization temperature among rice varieties. Furthermore, crucial parameters like gelatinization enthalpy (ΔH), gelatinization temperature range (R), and peak height index (PHI) all significantly declined in response to low temperature. These detrimental effects extend to rice flour pasting properties, resulting in reduced breakdown, peak, trough, and final viscosities, along with increased setback. Notably, low temperature also had a significant impact on the mineral nutrient contents of brown rice, although the extent of this impact varied among different elements and rice varieties. A positive correlation is observed between brown rice mineral nutrient content and factors such as chalkiness, gelatinization temperature, peak viscosity, and breakdown, while a negative correlation is established with amylose content and setback. Moreover, positive correlations emerge among the mineral nutrient contents themselves, and these relationships are further accentuated in the context of low-temperature conditions. Therefore, enhancing mineral nutrient content and increasing rice plant resistance to chilling stress should be the focus of breeding efforts to improve rice quality.

3.
Rice (N Y) ; 15(1): 32, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35763153

RESUMO

Heat stress during gametogenesis leads to spikelet sterility. To ascertain the role of female reproductive organ (pistil), two rice genotypes N22 and IR64 with contrasting heat stress responses were exposed to control (30 °C) and heat stress (38 °C and 40 °C) during megasporogenesis. Anatomical observations of ovule revealed greater disappearance of megaspore mother cell and nuclei at early stages, and during later stages mature embryo sac without female germ unit, improper positioning of nuclei, and shrunken embryo sac was observed in the sensitive IR64. Under heat stress, a decrease in sugar and starch, increase in H2O2 and malondialdehyde with lower antioxidant enzyme activities were recorded in pistils of both N22 and IR64. Lower accumulation of TCA cycle metabolites and amino acids were noticed in IR64 pistils under heat stress at gametogenesis, whereas N22 exhibited favorable metabolite profiles. At heading, however, N22 pistils had higher carbohydrate accumulation and better ROS homeostasis, suggesting higher recovery after heat stress exposure. In summary, the results indicate that heat stress during megasporogenesis leads to irreversible anatomical and physiological changes in pistil and alters metabolic signatures leading to increased spikelet sterility in rice. Mechanisms identified for enhanced heat tolerance in pistil can help in developing rice varieties that are better adapted to future hotter climate.

4.
Plant Cell Environ ; 41(6): 1287-1297, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29336039

RESUMO

High-temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day-time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high-night-time-temperature treatments. The day-time temperature played a dominant role in determining spikelet fertility compared with the night-time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high-yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high-temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early-morning flowering as a promising trait for mitigating HDT stress impact at flowering.


Assuntos
Fertilização/fisiologia , Germinação/fisiologia , Temperatura Alta , Hibridização Genética , Endogamia , Oryza/crescimento & desenvolvimento , Oryza/genética , Pólen/crescimento & desenvolvimento , Fertilidade , Zigoto/metabolismo
5.
J Exp Bot ; 68(18): 5233-5245, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29106621

RESUMO

Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates.


Assuntos
Oryza/crescimento & desenvolvimento , Amido/metabolismo , Biomassa , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Genótipo , Temperatura Alta , Oryza/genética , Oryza/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Temperatura
6.
Physiol Plant ; 159(1): 59-73, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27513992

RESUMO

High night temperature (HNT) is a major constraint to sustaining global rice production under future climate. Physiological and biochemical mechanisms were elucidated for HNT-induced grain yield and quality loss in rice. Contrasting rice cultivars (N22, tolerant; Gharib, susceptible; IR64, high yielding with superior grain quality) were tested under control (23°C) and HNT (29°C) using unique field-based tents from panicle initiation till physiological maturity. HNT affected 1000 grain weight, grain yield, grain chalk and amylose content in Gharib and IR64. HNT increased night respiration (Rn) accounted for higher carbon losses during post-flowering phase. Gharib and IR64 recorded 16 and 9% yield reduction with a 63 and 35% increase in average post-flowering Rn under HNT, respectively. HNT altered sugar accumulation in the rachis and spikelets across the cultivars with Gharib and IR64 recording higher sugar accumulation in the rachis. HNT reduced panicle starch content in Gharib (22%) and IR64 (11%) at physiological maturity, but not in the tolerant N22. At the enzymatic level, HNT reduced sink strength with lower cell wall invertase and sucrose synthase activity in Gharib and IR64, which affected starch accumulation in the developing grain, thereby reducing grain weight and quality. Interestingly, N22 recorded lower Rn-mediated carbon losses and minimum impact on sink strength under HNT. Mechanistic responses identified will facilitate crop models to precisely estimate HNT-induced damage under future warming scenarios.


Assuntos
Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Biomassa , Respiração Celular , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Glucosiltransferases/metabolismo , Temperatura Alta , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sintase do Amido/metabolismo , beta-Frutofuranosidase/metabolismo
7.
Funct Plant Biol ; 41(1): 48-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480965

RESUMO

Gametogenesis in rice (Oryza sativa L.), and particularly male gametogenesis, is a critical developmental stage affected by different abiotic stresses. Research on this stage is limited, as flowering stage has been the major focus for research to date. Our main objective was to identify a phenotypic marker for male gametogenesis and the duration of exposure needed to quantify the impact of heat stress at this stage. Spikelet size coinciding with microsporogenesis was identified using parafilm sectioning, and the panicle (spikelet) growth rate was established. The environmental stability of the marker was ascertained with different nitrogen (75 and 125kg ha-1) and night temperature (22°C and 28°C) combinations under field conditions. A distance of -8 to -9cm between the collar of the last fully opened leaf and the flag leaf collar, which was yet to emerge was identified as the environmentally stable phenotypic marker. Heat stress (38°C) imposed using the identified marker induced 8-63% spikelet sterility across seven genetically diverse rice genotypes. Identifying the right stage based on the marker information and imposing 6 consecutive days of heat stress ensures that >95% of the spikelets in a panicle are stressed spanning across the entire microsporogenesis stage.

8.
New Phytol ; 197(3): 825-837, 2013 02.
Artigo em Inglês | MEDLINE | ID: mdl-23252708

RESUMO

High night temperatures (HNTs) can reduce significantly the global rice (Oryza sativa) yield and quality. A systematic analysis of HNT response at the physiological and molecular levels was performed under field conditions. Contrasting rice accessions, N22 (highly tolerant) and Gharib (susceptible), were evaluated at 22°C (control) and 28°C (HNT). Nitrogen (N) and nonstructural carbohydrate (NSC) translocation from different plant tissues into grains at key developmental stages, and their contribution to yield, grain-filling dynamics and quality aspects, were evaluated. Proteomic profiling of flag leaf and spikelets at 100% flowering and 12 d after flowering was conducted, and their reprogramming patterns were explored. Grain yield reduction in susceptible Gharib was traced back to the significant reduction in N and NSC translocation after flowering, resulting in reduced maximum and mean grain-filling rate, grain weight and grain quality. A combined increase in heat shock proteins (HSPs), Ca signaling proteins and efficient protein modification and repair mechanisms (particularly at the early grain-filling stage) enhanced N22 tolerance for HNT. The increased rate of grain filling and efficient proteomic protection, fueled by better assimilate translocation, overcome HNT tolerance in rice. Temporal and spatial proteome programming alters dynamically between key developmental stages and guides future transgenic and molecular analysis targeted towards crop improvement.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Estresse Fisiológico , Temperatura , Biomassa , Sinalização do Cálcio , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...